Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Hammershøj* and Jørn B. Christensen

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Correspondence e-mail: jbc@kiku.dk

Key indicators

Single-crystal X-ray study
$T=122 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.061$
$w R$ factor $=0.149$
Data-to-parameter ratio $=48.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diethyl 4,7-dimethoxyindan-2,2-dicarboxylate

The title compound, $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$, crystallizes with two independent molecules in the asymmetric unit. The bond lengths and angles are generally within the normal ranges. The crystal packing is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions.

Comment

The title compound, (I), was prepared for use as a building block in the syntheses of single-walled carbon nanotube (SWNT) interacting compounds. It crystallizes in the monoclinic space group $P 2_{1} / c$ with two independent molecules in the asymmetric unit (Fig. 1). The corresponding bond lengths and angles of the two molecules agree with each other, but the molecules differ in the orientation of an ester group (Table 1). In both molecules, the methoxy groups are almost coplanar with the benzene ring and the five-membered rings of the indane ring system adopt envelope conformations. The crystal packing of (I) is stabilized mainly by weak intermolecular C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions (Table 2 and Fig. 2). In Table 2, Cg1 and Cg2 denote the centroids of rings $\mathrm{C} 1 A-\mathrm{C} 6 A$ and $\mathrm{C} 1 B-\mathrm{C} 6 B$, respectively.

Experimental

Diethyl 5-bromo-4,7-dimethoxyindan-2,2-dicarboxylate (10 g, 24.9 mmol), prepared as described by Hammershøj \& Christensen (2005), was dissolved in methanol (300 ml) and $\mathrm{Pd} / \mathrm{C} 10 \%$ (cat. amount) was added. The mixture was hydrogenated (5.8 p.s.i.) at room temperature for 20 h . The reaction mixture was filtered and evaporated to dryness in vacuo, yielding an off-white solid. Purification by crystallization from ethanol yielded compound (I) as a white powder (yield 63%, m.p. 362-364 K). Single crystals were obtained by slow evaporation from ethanol ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.7(2 \mathrm{H}, s), 4.2(4 \mathrm{H}, q, J=7.3 \mathrm{~Hz}), 3.41(4 \mathrm{H}, s), 1.25(6 \mathrm{H}, t, J$ $=6.23 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.5,149.7,129.5,109.2$, $61.5,59.7,55.5,37.9,13.9 ; m / e: 322$ (62), 248 (83.5), 175 (100) and 161

Received 11 August 2005 Accepted 21 September 2005 Online 28 September 2005

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50\% probability level. H atoms are shown as spheres of arbitrary radii.
(40\%); analysis calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$: C $63.3, \mathrm{H} 6.8 \%$; found: C 63.1, H 6.8\%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}$
$M_{r}=322.35$
Monoclinic, $P 2_{1} / c$
$a=16.569(1) \AA$
$b=8.033(1) \AA$
$c=24.643(3) \AA$
$\beta=90.232(7)^{\circ}$
$V=3279.9(6) \AA^{3}$
$Z=8$
$D_{x}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 37980 reflections
$\theta=1.2-40.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=122$ (2) K
Prism, white
$0.4 \times 0.31 \times 0.25 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
ω and φ scans
Absorption correction: Gaussian integration (Coppens, 1970)
$T_{\min }=0.977, T_{\max }=0.988$
141916 measured reflections
20169 independent reflections
12472 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.079$
$\theta_{\text {max }}=40.0^{\circ}$
$h=-29 \rightarrow 29$
$k=-14 \rightarrow 14$
$l=-43 \rightarrow 44$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0458 P)^{2}\right. \\
& +1.6487 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e}_{\AA^{-3}} \\
& \begin{array}{l}
\Delta \rho_{\max }=0.65 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

20169 reflections
415 parameters
H -atom parameters constrained

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{C} 11 A-\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	$13.47(14)$
$\mathrm{C} 10 A-\mathrm{O} 2 A-\mathrm{C} 4 A-\mathrm{C} 3 A$	$2.88(15)$
$\mathrm{C} 15 A-\mathrm{O} 6 A-\mathrm{C} 16 A-\mathrm{C} 17 A$	$81.15(11)$
$\mathrm{C} 10 B-\mathrm{O} 1 B-\mathrm{C} 4 B-\mathrm{C} 3 B$	$-1.98(15)$
$\mathrm{C} 11 B-\mathrm{O} 2 B-\mathrm{C} 1 B-\mathrm{C} 2 B$	$-12.14(14)$
$\mathrm{C} 15 B-\mathrm{O} 4 B-\mathrm{C} 16 B-\mathrm{C} 17 B$	$-163.66(9)$

Figure 2
The crystal packing of (I).

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 A-\mathrm{H} 7 A B \cdots \mathrm{O} 3 A$	0.99	2.48	$2.8639(13)$	102
$\mathrm{C} 9 A-\mathrm{H} 9 A B \cdots \mathrm{O} A$	0.99	2.48	$2.8501(12)$	102
$\mathrm{C} 11 A-\mathrm{H} 11 A C \cdots \mathrm{O} 3 B^{\mathrm{i}}$	0.98	2.55	$3.3757(15)$	142
$\mathrm{C} 7 B-\mathrm{H} 7 B A \cdots \mathrm{O} 5 B$	0.99	2.54	$2.8778(13)$	100
$\mathrm{C} 10 B-\mathrm{H} 10 B A \cdots \mathrm{O} 5 A$	0.98	2.55	$3.4685(15)$	156
$\mathrm{C} 13 A-\mathrm{H} 13 A B \cdots$ Cg $^{\text {ii }}$	0.99	2.65	$3.615(1)$	164
C13B-H13BA \cdots Cg2 $^{\text {iii }}$	0.99	2.67	$3.633(1)$	165

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, y-1, z$; (iii) $x, y+1, z$.
H atoms were placed in idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank Flemming Hansen for collecting the diffraction data and the Centre for Crystallographic Studies for the use of their equipment.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksggard.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Hammershøj, P. \& Christensen, J. B. (2005). Acta Cryst. E61, o3278-o3280..
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

